skip to main content


Search for: All records

Creators/Authors contains: "Schwab, David J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Continuous attractors have been used to understand recent neuroscience experiments where persistent activity patterns encode internal representations of external attributes like head direction or spatial location. However, the conditions under which the emergent bump of neural activity in such networks can be manipulated by space and time-dependent external sensory or motor signals are not understood. Here, we find fundamental limits on how rapidly internal representations encoded along continuous attractors can be updated by an external signal. We apply these results to place cell networks to derive a velocity-dependent nonequilibrium memory capacity in neural networks. 
    more » « less
  2. Abstract

    The reliable detection of environmental molecules in the presence of noise is an important cellular function, yet the underlying computational mechanisms are not well understood. We introduce a model of two interacting sensors which allows for the principled exploration of signal statistics, cooperation strategies and the role of energy consumption in optimal sensing, quantified through the mutual information between the signal and the sensors. Here we report that in general the optimal sensing strategy depends both on the noise level and the statistics of the signals. For joint, correlated signals, energy consuming (nonequilibrium), asymmetric couplings result in maximum information gain in the low-noise, high-signal-correlation limit. Surprisingly we also find that energy consumption is not always required for optimal sensing. We generalise our model to incorporate time integration of the sensor state by a population of readout molecules, and demonstrate that sensor interaction and energy consumption remain important for optimal sensing.

     
    more » « less
  3. The information bottleneck (IB) approach to clustering takes a joint distribution [Formula: see text] and maps the data [Formula: see text] to cluster labels [Formula: see text], which retain maximal information about [Formula: see text] (Tishby, Pereira, & Bialek, 1999 ). This objective results in an algorithm that clusters data points based on the similarity of their conditional distributions [Formula: see text]. This is in contrast to classic geometric clustering algorithms such as [Formula: see text]-means and gaussian mixture models (GMMs), which take a set of observed data points [Formula: see text] and cluster them based on their geometric (typically Euclidean) distance from one another. Here, we show how to use the deterministic information bottleneck (DIB) (Strouse & Schwab, 2017 ), a variant of IB, to perform geometric clustering by choosing cluster labels that preserve information about data point location on a smoothed data set. We also introduce a novel intuitive method to choose the number of clusters via kinks in the information curve. We apply this approach to a variety of simple clustering problems, showing that DIB with our model selection procedure recovers the generative cluster labels. We also show that, in particular limits of our model parameters, clustering with DIB and IB is equivalent to [Formula: see text]-means and EM fitting of a GMM with hard and soft assignments, respectively. Thus, clustering with (D)IB generalizes and provides an information-theoretic perspective on these classic algorithms. 
    more » « less